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Abstract. We show that new universality of Lyapunov spectra{λi} exists in Hamiltonian
systems with many degrees of freedom. The universality appears in systems which are neither
nearly integrable nor fully chaotic, and it is different from the one which is obtained in fully
chaotic systems on one-dimensional chains as follows. One is that the universality is found in
a finite range of largei/N rather than the whole range, whereN is the number of degrees of
freedom. Another is that Lyapunov spectra are not straight, while fully chaotic systems give
straight Lyapunov spectra even on the three-dimensional simple cubic lattice. The universality
appears when quadratic terms of a potential function dominate higher terms, harmonic motions
are hence regarded as the base of global motions.

1. Introduction

During the past few decades Hamiltonian systems with many degrees of freedom have been
numerically investigated by integrating equations of motion. Hamiltonian systems being
the foundation of statistical mechanics, one direction of the investigations is to check the
ergodic property originating in Fermi–Pasta–Ulam problem [1–3]. Another direction is to
study their dynamical properties, which are transition from nearly integrable systems to
stronger chaotic ones [4, 5], dynamical properties of phase transition [6, 7], structure of
phase spaces [5, 8], etc.

Here we focus on dynamical properties, in particular, universal structures of phase
spaces which are not affected by details of systems. One of the structures is a self-similar
structure which is based on the Poincaré–Birkhoff theorem [9] in nearly integrable systems.
Although this theorem is available in systems with two degrees of freedom, the self-similar
structure is also supposed in systems with many degrees of freedom.

Lyapunov spectrum is usually used to study instability along a sample orbit. Moreover,
it is useful to study the structure of phase spaces both in dissipative [10, 11] and Hamiltonian
[5, 8] systems with many degrees of freedom, since it includes information on all directions
in phase space. Although Lyapunov spectra in a system reveal dynamical properties of the
system, we are interested further in properties which are not affected by details of systems.
To detect such properties a useful approach is to find the universal form of Lyapunov spectra
which is obtained in all the systems and whose cause indicates the properties. A universal
form of Lyapunov spectraL(i/N) = λi is reported in Hamiltonian systems which are
one-dimensional chains consisting of nonlinear oscillators [12], whereN is the number of
degrees of freedom. This universality gives the straight form for Lyapunov spectra, namely
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L(i/N) = a+b · i/N , and the straight form is also obtained with random matrices [12, 13].
Consequently, systems having straight Lyapunov spectra are regarded as fully chaotic ones
which have no structure in phase spaces.

In this paper we show new universality of Lyapunov spectra appearing in systems with
moderate strength of chaos which are neither fully chaotic nor nearly integrable, and study
the cause of the universality. Here we define the word ‘universality of Lyapunov spectra’ as
L(i/N) approximately takes the same form in a finite range of largei/N regardless of total
energy and details of systems. Systems with moderate strengths of chaos are interesting
for the following two reasons. One is that they have some unsolved problems and show
interesting phenomena, for instance, second-order phase transition [14], and the other is
that the structure of phase spaces has not been understood while it is understood in systems
which are nearly integrable or fully chaotic. Models investigated in this paper consist of
nonlinear oscillators with nearest-neighbour interactions, and each oscillator is on a lattice
point of the three-dimensional simple cubic lattice.

This paper is constructed as follows. We introduce five models in section 2. They are
used to confirm the new universality of Lyapunov spectra which appears in a wide class
of Hamiltonian systems. We show Lyapunov spectra which is yielded by using random
matrices with temporalδ- or exponential correlations in section 3. The Lyapunov spectra
are straight even in systems which are on the three-dimensional lattices when the systems
are fully chaotic. In sections 4 and 5, we show that Lyapunov spectra for the five systems
are not straight and have universality, and that the systems are neither fully chaotic nor
nearly integrable. In section 5 we show that the new universality appears when quadratic
terms of a potential function,U2, dominate higher terms,U4, namelyU2/U4 takes large
values. Section 6 is devoted to a summary and discussions.

2. Models

We introduce five model Hamiltonians each of which represents a system being on the three-
dimensional simple cubic lattice with nearest-neighbour interactions and periodic boundary
condition. All Hamiltonians consist of kinetic and potential terms,

H(q, p) = K(p)+ U(q) (1)

where the kinetic term is

K(p) =
N∑
j=1

1
2p

2
j (2)

andN is the number of degrees of freedom, namelyN = L3 whereL is the linear size of
the lattice.

One of the models is called theXY model and is expressed as follows

UXY (q) =
∑
〈ij〉

[1− cos(qi − qj )] qj ∈ [0, 2π) (3)

where the summation
∑
〈ij〉 takes over all the pairs of nearest-neighbour lattice pointsi and

j .
The following three systems are expressed as

U(q) =
∑
〈ij〉

1
2(qi − qj )2+

N∑
j=1

V (qj ) (4)



New universality of Lyapunov spectra 197

and they are distinguished by their potential functionsV (q). In the double well (DW) model

VDW(q) = − 1
2q

2+ 1
4q

4 (5)

in the single well (SW) model

VSW(q) = 1
2q

2+ 1
4q

4 (6)

and in the Lorentzian (LO) model

VLO(q) = q2

1+ q2
. (7)

The last one has interactions of FPU-β type (3DFPU)

U3DFPU=
∑
〈ij〉

[
k

2
(qi − qj )2+ 1

4
(qi − qj )4

]
. (8)

This model is used in section 5 to determine which term is dominant when the new
universality appears.

Numerical integrations of Hamiltonian equations of motion,

dqj
dt
= ∂H(q, p)

∂pj

dpj
dt
= −∂H(q, p)

∂qj
(j = 1, 2, . . . , N) (9)

are performed with fourth-order symplectic integrator with the fixed time slice1t = 0.01.
Accuracy of total energy is1E/E ∼ O((1t)4) where1E andE are error and an initial
value of total energy, respectively.

3. Lyapunov spectra with random matrices

As mentioned in the introduction, Lyapunov spectraL(i/N) calculated with random matrices
are straight in one-dimensional chains. The Lyapunov spectrum is a set of Lyapunov
exponents{λi} (i = 1, 2, . . . , D), whereD is the dimension of phase space and the
exponents are put in order asλi > λi+1. The summation ofλi up to n,

∑n
i=1 λi , indicates

linear instability of then-dimensional volume elementVn in phase space along a sample
orbit. Namely,Vn diverges or converges as

Vn(t) ∼ exp[(λ1+ λ2+ · · · + λn)t ] (10)

wheret represents time. Each of Hamiltonian systems withN degrees of freedom has 2N
Lyapunov exponents which satisfy the following relations induced by symplectic properties

λ2N−i+1 = −λi (i = 1, 2, . . . , N). (11)

Hence, we have only to observe the first half of the Lyapunov spectrum when we consider
Hamiltonian systems. Details of Lyapunov spectrum are reviewed in [15] and references
therein.

The purpose of this section is to show that fully chaotic systems have straight Lyapunov
spectra even in the three-dimensional simple cubic lattice. We describe how we calculate
Lyapunov spectra with random matrices, and then the Lyapunov spectra are shown.

Lyapunov spectra indicate linear instability of a sample orbit, and they are calculated
from linearized equations of motion,

d

dt

(
δq

δp

)
=
(

0 1N
−A(q) 0

)(
δq

δp

)
(12)
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where(δq, δp) is a tangent vector, 1N is the unit matrix ofN × N , and (i, j) element of
the matrixA(q) is

Aij (q) = ∂2U(q)

∂qi∂qj
. (13)

Here we used the form of our Hamiltonians, equations (1) and (2). Temporal evolution
of the matrixA(q) is determined by temporal evolution ofqj (t)’s, and in this section we
assume thatqj (t)’s are independent random variables withδ- or exponential correlations,
namely

Cij (t) ∝ δij δ(t) or δije
−αt . (14)

Cij (t) is the correlation function betweenqi(t) andqj (t), and it is defined as

Cij (t) = 1qi(t)1qj (0) = lim
T→∞

1

T

∫ T

0
dt ′1qi(t + t ′)1qj (t ′) (15)

and

1qj(t) = qj (t)− lim
T→∞

1

T

∫ T

0
dt qj (t). (16)

We show Lyapunov spectra in figure 1 which are calculated with random matrices having
the δ-correlation, and the Lyapunov spectra are straight as they are in one-dimensional
chains. We take random variables from the uniform distribution, and ranges ofqj (t)’s are
[−π, π) for theXY model, and [−3, 3] for DW and SW models.

Next we changeδ-correlation into exponential, and we setα = 0.4, 0.6, 0.8 and 1.0
whereα is the reciprocal number of correlation time ofqj (t) (see equation (14)). Figure 2
shows the Lyapunov spectra obtained by using random matrices with exponential correlation,
and the Lyapunov spectra are also straight in the region of 0.2 . i/N 6 1. Consequently,
we suppose that finite correlation time does not affect the straightness of Lyapunov spectra.

Random matrices withδ- or exponential correlation yield straight Lyapunov spectra,
and fully chaotic systems hence give the straightness even in the three-dimensional simple
cubic lattice. This result is used later to distinguish that our systems evolved by Hamiltonian
equations of motion from fully chaotic ones.

4. New universality of Lyapunov spectra

In this section, we show that new universality of Lyapunov spectra exists in systems which
are neither fully chaotic nor nearly integrable and which are in the thermodynamic limit
(N →∞) through giving the following four results. (i) The degrees of freedomN = 43 is
high enough to reach the thermodynamic limit for Lyapunov spectra. (ii) Forms of Lyapunov
spectra are invariant with respect to energy in each of the four models which are XY, DW,
SW and LO in a finite range of largei/N . (iii) The invariant forms of the four systems are
in good agreement, and they are not approximated by the straight line. Here we conclude
that new universality of Lyapunov spectra is found. (iv) Appearance of the new universality
is not limited in nearly integrable systems.

Lyapunov spectra for theXY model are shown in figure 3(a) in which points and dots
represent that the degrees of freedom areN = 43 and 103 respectively. Numbers in the
figure are values of energy densityE/N . The Lyapunov spectra do not correspond with
each other even though they have the same energy density.

Let us note that the form of the Lyapunov spectrumL(i/N) is determined by ratios
between Lyapunov exponentsλi rather than their absolute values. Accordingly, we may
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Figure 1. Lyapunov spectra yielded by using random matrices withδ-correlation forXY , DW
and SW models. (a) XY model. (b) DW (♦) and SW (+) models. They are straight even in
systems on three-dimensional lattices as they are in one-dimensional chains. Random variables
follow uniform distributions. The full lines are guides for eyes.

uniformly scale the Lyapunov spectrum up or down fromL(i/N) to γL(i/N), whereγ
is arbitrarily picked for each spectrum. To multipleL(i/N) by γ corresponds to changing
the timescale fromt into t/γ . Scaled Lyapunov spectra are shown in figure 3(b), and their
forms holds regardless of the degrees of freedom, where scale factors areγ = 1

1.1 and
1.0 for each spectrum inN = 43 and 103 respectively. Since the thermodynamic limit of
Lyapunov spectra [16, 17] exists, we suppose that the system reaches the thermodynamic
limit evenN = 43 concerning Lyapunov spectra. We therefore setN = 43, and use scaled
Lyapunov spectra without comment hereafter.

Invariance ofL(i/N) with respect to energy is shown in figure 4 for the four models.
In each of the models, Lyapunov spectra are in good agreement among various values of
energy in a range of largei/N in the middle energy regime. Scale factorγ and the ranges
of i/N where the invariance appears are arranged in tables A1 and A2, respectively. We
remark that the invariance breaks or is strictly limited in a narrow range ofi/N when energy
is too high or low, that areE/N = 100 inXY and DW, andE/N = 1.0 in SW.
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Figure 2. Lyapunov spectra yielded by using random matrices with exponential correlation for
DW. α, the reciprocal number of correlation time, is 0.4, 0.6, 0.8 and 1.0 from lower to upper.
Spectra show straight behaviour as figure 1 in the region of 0.2 . i/N 6 1. The full lines are
guides for eyes.

Next we show the invariant forms of Lyapunov spectra of the four models together in
figure 5. Scale factorγ is arranged in table A3. The four spectra in figure 5 coincide in
a range of largei/N (0.4 . i/N 6 1), while the full line, which is obtained with random
matrices, approximates them in a narrower range (0.7 . i/N 6 1). That is, the invariant
forms do not depend on details of models and are not straight, and consequently, Lyapunov
spectra of the four models have universality which is different from the one obtained in
fully chaotic systems.

Moreover, we show that the new universality appears even when systems are not nearly
integrable. We confirm that systems are not nearly integrable through showing that KAM
tori, many of which survive in nearly integrable systems [18], are not observed effectively.
We use the fact that linear instability is suppressed around KAM tori since an orbit behaves
like a regular one, while enhanced in chaotic sea. Accordingly, in nearly integrable systems,
intermittency of local Lyapunov exponentλloc

1 (n) occurs which is defined as follows

λloc
1 (n) =

1

τ

∫ (n+1)τ

nτ

λ1(t) dt (17)

λ1(t) = d

dt
log |X(t)| (18)

whereX(t) = (δq, δp) is a 2N -dimensional tangent vector following linearized Hamiltonian
equations of motion, equation (12). Figure 6 shows two time series of local Lyapunov
exponent forE/N = 1.0 and 3.0 in theXY model, both of which yield the new universal
Lyapunov spectra. HereN = 103. Intermittency is found forE/N = 1.0 but not for
E/N = 3.0, and hence the existence of KAM tori does not seem to be related to the new
universality. Consequently, the universality appears in systems with moderate strength of
chaos which are between nearly integrable and fully chaotic.
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Figure 3. Dependence on degrees of freedomN . Points and dots are Lyapunov spectra for
N = 43 and 103 respectively. Numbers in the figure represent values of energy densityE/N .
(a) Non-scaled. (b) Vertical axis is scaled forN = 43 and the scale factorγ = 1

1.1 for all
values of energy. In each energy, scaled Lyapunov spectrum forN = 43 is in good agreement
with one forN = 103.

Table 1. Behaviour of Lyapunov spectra in 3DFPU model.k andE/N are coupling constant
and energy density, respectively. The sign S means straight behaviour of the Lyapunov spectrum,
while the sign C curved behaviour. The forms of curved Lyapunov spectra are in good agreement
with the universal form.

k \ E/N 1.0 2.0 3.0

0.4 S S S
0.7 C S S
1.0 C C S

5. 3DFPU model and quadratic interactions

To probe what conditions produce the universality, we study the 3DFPU model with various
values of energy densityE/N and coupling constantk (see equation (8)). Lyapunov spectra
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Figure 4. Lyapunov spectra for various values of energy in four Hamiltonian systems. (a) XY
model. (b) DW model. (c) SW model. (d) LO model. Forms of Lyapunov spectra are the
same in a range of largei/N in the middle energy regime in each model. Scale factorγ and
the range ofi/N giving the invariant form are arranged in tables A1 and A2.

Table 2. Ratios between time averages of the quadratic termU2 and the quartic termsU4 of
potential function in 3DFPU model. We subtract 1.50 from each of the ratios to make a threshold
clear, namely values arranged in this tables areU2/U4 − 1.5. The positive values are found at
the places where the sign C appears in table 1.

k \ E/N 1.0 2.0 3.0

0.4 −0.60 −0.91 −1.02
0.7 0.33 −0.33 −0.62
1.0 1.55 0.37 −0.09

for the 3DFPU model are shown in figure 7 with a Lyapunov spectrum for theXY model
belonging in the universality, and they are classified into group C and group S. Group C
includes the universal Lyapunov spectrum which is in good agreement with curved three
spectra for 3DFPU, and other spectra for 3DFPU are straight and belong to group S. The
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Figure 4. (Continued)

classification is arranged in table 1 with respect tok andE/N . Lyapunov spectra show
curved forms whenk is large andE/N is low, we hence conjecture that quadratic terms of
potential function are dominant rather than quartic terms when the universality appears.

This conjecture is verified by taking ratios between time averages ofU2 andU4, namely
U2/U4, where

U2 =
∑
〈ij〉

k

2
(qi − qj )2 (19)

U4 =
∑
〈ij〉

1
4(qi − qj )4 (20)

and

Un = lim
T→∞

1

T

∫ T

0
dt Un(t) (n = 2, 4). (21)

The ratios are arranged in table 2, and they are large at the places where the sign C appears
in table 1. Consequently, the conjecture is verified.
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Figure 5. Universal behaviour of scaled Lyapunov spectra of four models. The Lyapunov
spectra coincide well among the four models in a range of largei/N , namely 0.4 . i/N 6 1,
and they are not approximated by the straight line, which approximates them only in the range of
0.7. i/N 6 1. The straight line is obtained with random matrices. Scale factorγ is arranged
in table A3.
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Figure 6. Temporal evolutions of local Lyapunov exponentλloc
1 (n) in theXY model.N = 103.

We setτ = 10. Lower and upper curves takeE/N = 1.0 and 3.0 respectively, both of which
yield the new universal Lyapunov spectra. Intermittency is found forE/N = 1.0 but not for
E/N = 3.0.

6. Summary and discussions

In order to consider the structure of phase spaces in Hamiltonian systems with moderate
strength of chaos, we numerically investigated Lyapunov spectra{λi} for five Hamiltonian
systems with many degrees of freedom. We showed the existence of universality of
Lyapunov spectra, which is defined as Lyapunov spectra approximately take the same
form regardless of energy and details of the systems. The universality gives a curved
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Figure 7. Lyapunov spectra in 3DFPU model. They are classified into group C and group S.
Group C includes the universal spectrum which is in agreement with three spectra for 3DFPU,
while group S consists of six spectra for 3DFPU which are straight. The straight line is a guide
for eyes. The classification is arranged in table 1 with respect tok andE/N . Scale factorγ
shown in table A4.

form for Lyapunov spectra, and hence it is different from the one obtained in fully chaotic
systems.

A feature of the new universality is that it appears in a finite range of largei/N , where
N is degrees of freedom, and accordingly, properties depending on energy or details of
models affect forms of Lyapunov spectra only in the range of smalli/N where is out of
the universality. In other words, we only have to focus on the range of smalli/N when
we are interested in such individual properties.

We studied what conditions induce the universality to understand the cause of it.
We showed that quadratic terms of a potential function dominate higher terms when the
universality appears, harmonic motions are therefore regarded as the base of global motions
in phase spaces.

We geometrically interpret the harmonic motions and that the universality appears in
a finite range ofi/N as follows. Harmonic motions occur in high-dimensional subspaces
of phase spaces, which correspond to the finite range ofi/N , and structure of phase space
consists of chaotic sea and wrecks ofn-dimensional tori, wheren 6 N andn may change
for each torus. Heren-dimensional torus means, roughly speaking, direct product ofT n

and(N −n)-dimensional instability, which is hyperbolic or complex. Noten = N is KAM
torus.

We need further analyses to confirm whether this interpretation is valid or not, and to
understand the origin of the new universality. We give two approaches which are geometrical
and analytical.

A geometrical approach uses resonance of instability along an orbit. Negative curvature
of potential function induces positive Lyapunov exponent. On the other hand, even the
curvature is always positive, resonance of instability along a sample orbit gets the largest
Lyapunov exponent to be positive [19]. Here let us assume that this resonance theory
can be extended not only to the largest Lyapunov exponent but to all the exponents. If
the resonances are yielded by harmonic motions in high-dimensional subspace of phase
space, then universality of Lyapunov spectra may be obtained because harmonic motions
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are independent of details of models.
An analytical approach is to calculate the decay rate spectrum of harmonic motions. In

a dissipative system, behaviour of Lyapunov spectrum agrees with the decay rate spectrum
of the linear fluctuation modes from the stationary solution [10]. This suggests that to
analyse decay rate spectrum it is useful to understand the behaviour of Lyapunov spectrum.
Hamiltonian systems are regarded as dissipative systems when we observe only subspaces of
phase spaces, and hence the decay rate spectrum must be useful because the new universality
appears only in high-dimensional subspaces of phase spaces.

Our aim is to understand the global structure of phase spaces in Hamiltonian
systems with moderate strength of chaos. We must be allowed to come near the goal
by understanding the cause of the new universality, because ratios between Lyapunov
exponents, which determine the form of the Lyapunov spectrum, seem to concern global
structure of phase spaces. The new universality of Lyapunov spectra is an important clue
to reveal the global structure.

Acknowledgments

The author expresses grateful thanks to T Konishi for useful discussions and careful reading
of the manuscript, and H Yamada, A Taruya and M Ishii for helpful discussions. The author
would also like to thank the Computer Center of the Institute for Molecular Science, for
the use of the NEC SX-3/34R.

Appendix. Tables of scale factorγ

Table A1. Scale factorγ in figure 4.

XY DW SW LO

E/N γ E/N γ E/N γ E/N γ

1.0 3.4 1.0 6.0 1.0 12 1.0 1.0
2.0 1.0 1.4 2.4 3.0 2.65 3.0 1.2
3.0 1/2.6 1.8 1.4 5.0 1.6 5.0 1.4
4.0 1/5.0 2.2 1.0 7.0 1.2 7.0 1.95
5.0 1/5.5 100 1/11 9.0 1.0

100 4.0

Table A2. Rough estimations of ranges ofi/N where universal behaviour of Lyapunov spectra
appears in four models.

Model XY DW SW LO

i/N [0.4, 1] [0.31, 1] [0.16, 1] [0.11, 1]
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Table A3. Scale factorγ in figure 5.

Model XY DW SW LO

E/N 6.0 2.0 3.0 3.0
γ 1.0 18 12.7 33

Table A4. Scale factorγ in figure 7.

k \ E/N 1.0 2.0 3.0

0.4 1.0 0.75 0.66
0.7 1.7 0.91 0.74
1.0 2.25 1.4 0.92
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